माना $A =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ तथा $B =\left\{y_{1}, y_{2}, y_{3}\right\}$ ऐसे दो समुच्चय हैं जिनमें क्रमशः सात तथा तीन विभित्र अवयव हैं ; तो ऐसे फलनों $f: A \rightarrow B$ की कुल संख्या, जो कि आच्छादक हैं, यदि $A$ में ऐसे ठीक तीन $x$ अवयव हैं जिनके लिए $f(x)=y_{2}$ है
$14.{}^7{C_3}$
$16.{}^7{C_3}$
$14.{}^7{C_2}$
$12.{}^7{C_2}$
माना $f: N \rightarrow N$ एक फलन है, जिसके लिए $f( m + n )=f( m )+f( n ) \forall m , n \in N$ है। यदि $f(6)=18$ है, तो $f(2) \cdot f(3)$ बराबर है
मान लीजिए कि $f: R \rightarrow R$ एक सतत फलन इस प्रकार है कि सभी $x \in R$ के लिए $f\left(x^2\right)=f\left(x^3\right)$ है। निम्न कथनों पर विचार करें
$I$. $f$ एक विषम फलन है
$II$. $f$ एक सम फलन है
$III$. $f$ सभी जगह अवकलनीय है तब
यदि $f(x) = \cos (\log x)$, तब $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right]$ का मान होगा
यदि $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, ${x_1},{x_2} \in [ - 1,\,1]$ के लिए, तब $f(x)$ है
माना $f(x)=2 x^2-x-1$ तथा $S=\{n \in Z :|f(n)| \leq 800\} \quad$ हैं। तब $\sum \limits_{n \in S} f(n)$ का मान है $............$